Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter.
نویسندگان
چکیده
In Aspergillus nidulans, proline can be used as a carbon and nitrogen source, and its metabolism requires the integration of three signals, including proline induction and nitrogen and carbon metabolite derepression. We have previously shown that the bidirectional promoter in the prnD-prnB intergenic region undergoes drastic chromatin rearrangements such that proline induction leads to the loss of positioned nucleosomes, whereas simultaneous carbon and nitrogen metabolite repression results in the partial repositioning of these nucleosomes. In the proline cluster, the inhibition of deacetylases by trichostatin A leads to partial derepression and is associated with a lack of nucleosome positioning. Here, we investigate the effect of histone acetylation in the proline cluster using strains deleted of essential components of putative A. nidulans histone acetyltransferase complexes, namely, gcnE and adaB, the orthologues of the Saccharomyces cerevisiae GCN5 and ADA2 genes, respectively. Surprisingly, GcnE and AdaB are not required for transcriptional activation and chromatin remodeling but are required for the repression of prnB and prnD and for the repositioning of nucleosomes in the divergent promoter region. Chromatin immunoprecipitation directed against histone H3 lysines K9 and K14 revealed that GcnE and AdaB participate in increasing the acetylation level of at least one nucleosome in the prnD-prnB intergenic region during activation, but these activities do not determine nucleosome positioning. Our results are consistent with a function of GcnE and AdaB in gene repression of the proline cluster, probably an indirect effect related to the function of CreA, the DNA-binding protein mediating carbon catabolite repression in A. nidulans.
منابع مشابه
Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors.
The prnD-prnB intergenic region regulates the divergent transcription of the genes encoding proline oxidase and the major proline transporter. Eight nucleosomes are positioned in this region. Upon induction, the positioning of these nucleosomes is lost. This process depends on the specific transcriptional activator PrnA but not on the general GATA factor AreA. Induction of prnB but not prnD can...
متن کاملMetabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans.
The clustered prnB, prnC, and prnD genes are repressed by the simultaneous presence of glucose and ammonium. A derepressed mutation inactivating a CreA-binding site acts in cis only on the permease gene (prnB) while derepression of prnD and prnC is largely the result of reversal of inducer exclusion.
متن کاملNucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14.
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the...
متن کاملDisplacement of histones at promoters of Saccharomyces cerevisiae heat shock genes is differentially associated with histone H3 acetylation.
Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HS...
متن کاملContributions of Histone H3 Nucleosome Core Surface Mutations to Chromatin Structures, Silencing and DNA Repair
Histone H3 mutations in residues that cluster in a discrete region on the nucleosome surface around lysine 79 of H3 affect H3-K79 methylation, impair transcriptional silencing in subtelomeric chromatin, and reveal distinct contributions of histone H3 to various DNA-damage response and repair pathways. These residues might act by recruitment of silencing and DNA-damage response factors. Alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2008